Reasoning and Problem Solving Step 7: Divide with Remainders

Teaching note: We have included grids for short division and recommend that this resource is printed in colour or greyscale.

National Curriculum Objectives:

Mathematics Year 5: (5C7b) Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context

Differentiation:

Questions 1, 4 and 7 (Reasoning)
Developing Identify whether a calculation is correct and explain why. No use of zero as a place holder and no exchanges. Short method of division supported by place value grid showing grouping.
Expected Identify the correct statement and explain why. Some use of zero as a place holder and includes up to two exchanges.
Greater Depth Identify the correct statement and explain why. Use of zero as a place holder and includes up to three exchanges.

Questions 2, 5 and 8 (Problem Solving)
Developing Solve a word problem. No use of zero as a place holder and no exchanges. Short method of division supported by place value grid showing grouping.
Expected Solve a word problem. Some use of zero as a place holder and includes up to two exchanges.
Greater Depth Solve a word problem. Use of zero as a place holder and includes up to three exchanges where some numbers within calculations are incomplete.

Questions 3, 6 and 9 (Problem Solving)
Developing Arrange number cards to create a calculation with a given remainder. No use of zero as a place holder and no exchanges.
Expected Arrange number cards to create a calculation with a given remainder. Some use of zero as a place holder and includes up to two exchanges.
Greater Depth Arrange number cards to create a calculation with a given remainder. Use of zero as a place holder and includes up to three exchanges where some numbers within calculations are incomplete.

More Year 5 Multiplication and Division resources.

Did you like this resource? Don't forget to review it on our website.

Divide with Remainders

Divide with Remainders

1a. Johnny is calculating $3,665 \div 3$. The answer is $1,221 \mathrm{r} 3$. Johnny			
Thousands	Hundreds	Tens	Ones
1,000	100 100 100 100 100 100	10 10 10 10 10 10	1 1 1 1 1

Is he correct? Explain your reasoning.吅
2a. Tennis balls are packed into tubes. One tube holds 5 tennis balls. There are 5,557 tennis balls. How many tubes are needed to hold all the tennis balls?

3a. Arrange the number cards below to create a calculation which has a remainder of 1 . Complete the calculation.

\square 8 8

1b. Steph is calculating $2,243 \div 2$.

Steph

Thousands	Hundreds	Tens	Ones
1.000 1.000 100 100 100 10 10 100 100 10 10 1			

Is she correct? Explain your reasoning. 몽
2b. Chocolate bars are packed into packets. One packet holds 4 bars. There are 4,847 bars. How many packets are needed to hold all the bars?

3b. Arrange the number cards below to create a calculation which has a remainder of 1 . Complete the calculation.

4a. Sean and Gabriel are calculating $7,987 \div 6$.

Who is correct? Explain your reasoning.

5a. Oranges are packed into nets. One net holds 5 oranges. There are 2,307 oranges. How many nets are needed to hold all the oranges?

6a. Arrange the number cards below to create a calculation which has a remainder of 4. Complete the calculation.

Divide with Remainders

7a. Cian and Jake have been exploring the 1 -digit number that 3,455 has been divided by to get the answer 575 r 5 .

8a. There are 3,170 cupcakes packed into less than 500 trays with 2 left over. How many cupcakes fit into a tray, and how many trays would there be?

9a. Arrange the number cards below to create a division with a remainder of 4. Discover the number hidden by the splat and complete the calculation.

7b. Sinead and Isabel have been exploring the 1-digit number that 4,332 has been divided by to get the answer 866 r 2.

8b. There are 2,012 pears packed into less than 300 bags with 3 left over. How many pears fit into a bag, and how many bags would there be?

9b. Arrange the number cards below to create a division with a remainder of 3. Discover the number hidden by the splat and complete the calculation.

Reasoning and Problem Solving Divide with Remainders

Reasoning and Problem Solving Divide with Remainders

Developing

1a. Johnny is incorrect because $3,665 \div=1,221 \mathrm{r} 2$.
2a. $4,886 \div 4=1,221 \mathrm{r} 2 ; 1,112$ tubes will be needed.
3a. $8,485 \div 4=2,221 \mathrm{r} 1$

Expected

4a. Sean is correct. Gabriel has
miscalculated how many times 7 can be grouped into 6.
5a. $2,307 \div 5=461 \mathrm{r} 2 ; 462$ nets will be needed.
6a. Various answers, for example:
$2,767 \div 9=307 \mathrm{r} 4,2,776 \div 9=308 \mathrm{r} 4$

Greater Depth

7a. Jake is correct. Cian's divisor would give an answer of 493 r4.
8a. 8 cupcakes per tray and 396 trays.
9 a. Various answers, for example:
$5,541 \div 7=791 \mathrm{r} 4$

Developing

1b. Steph is incorrect because
$2,243 \div 2=1,121 \mathrm{r}$.
2b. $4,847 \div 4=1,211 \mathrm{r} 3$; 1,212 packets will be needed.
3b. $6,697 \div 3=2,232 \mathrm{r} 1$

Expected

4b. Alice is correct. Hannah has miscalculated how many times 39 can be grouped into 8 so her remainder is bigger than her divisor.
5b. $9,621 \div 8=1,202 \mathrm{r} 5,1,203$ boxes will be needed.
6b. $3,544 \div 7=506 \mathrm{r} 2$

Greater Depth

7b. Isabel is correct. Sinead's divisor would give an answer of 541 r 4.
8b. 7 pears per bag and 287 bags.
9b. Various answers, for example:
$3,153 \div 9=350 \mathrm{r} 3,3,135 \div 9=348 \mathrm{r} 3$

